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ABSTRACT 

In the analysis of TG curves to extract kinetic data approximation of the temperature 
integral must be made. Currently available programmable calculators and small computers 
make it possible to do numerical integration quickly and accurately as part of the kinetic 
treatment. It is necessary, however, to understand the limits of accuracy of the results 
and the factors affecting the computations_ 
been evaluated. The data presented provide 
numerical methods. 

The results of several of these factors have 
a basis for evaluating and comparing such 

INTRODUCTION 

For a nonisothermal process, the rate law is frequently written as 

dcy ,i! e-E/R* qar) 

dT P 

where Q! is the fraction reacted, T is the temperature (K), R is the molar gas 
constant, E is the activation energy, fl is the heating rate, and A is the pre- 
exponential factor. Typically, f(cu) is taken as (1 - a)“, where n is the reac- 
tion order so that 

f& =A e-E/RT (I_ a)n 

dT P 
or 

(2) 

(3) 

Complete analysis of the TG c-es is made difficult by the fact that the 
temperature integral, _fzeBEiRT dT h as no closed form equivalent. In order to 
deal with a number of important problems in nonisothermal kinetics it is 
essential that the temperature integral be evaluated accurately. Approxima- 
tions of this integral by truncated series or other methods have resulted in 
the development of a number of computational and curve fitting approaches 
[l-19]. Tables of values for the integral are available for specified tempera- 
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tures and activation energies [17] and approximation formulas have been 
derived [ 181. 

The programma ble calculator has found wide applicability in a variety of 
complex data analysis and computational procedures [20-241 and the com- 
puting power of the ‘current generation of programmable calculators 
approaches that of the small computer. Evaluation of the temperature inte- 
gral is easily carried out using any of the more sophisticated machines. The 
interactive capability of the machine is important as well. In developing an 
analysis procedure for TG curves for kinetic data, it was necessary to per- 
form rapid evaluations of the temperature integral at any value of E and 2’. 
The purpose of this paper is to describe the evaluation of the temperature 
integral using a programmable calculator and to present some observations 
on the nature of the results which must be considered in using them in pro- 
grams to evaluate kinetic data. 

METHOD 

The evaluation of the temperature integral was carried out using a Texas 
Instruments prcg?ammable TI-59 calculator with the PC-1OOC printer. In 
order to generate a table of values at regular values of T and E, a program 
was written to begin with a starting value of E, To = 0, and a specified upper 
temperature limit. The program then increments the upper temperature limit 
to a higher value and then proceeds to evaluate the temperature integrals un- 
til all the desired values of T are used. Next the activation energy is 
incremented and the whole series of upper temperature limits used again. 
The .progcam calls as a subroutine the Simpson’s rule routine in the program 
read only memory (PROM). Any starting values for the upper limit of tem- 
perature and activation energy can be specified and any size increments in 
each can be chosen. The program computes the negative logarithm of the 
integral as the final output. A copy of the program with documentation is 
available from the author. 

For single evaluations of the temperature integral the same approach was 
used with the library program for Simpson’s rule integration. In both cases, 
the interval width (actually the number of subintervals) must be specified. 

RESULTS AND DISCUSSION 

Effect of the number of subintervals 

In order to evaluate the requirements of the computations to give a 
desired accuracy in the -log I value it was necessary to determine the effect 
of varying the number of subintervals used in the integration. To do this, it 
was chosen to evaluate the integrals from 0 to 400 K for E = 30 kcal mole-’ 
and in the interval O-800 K for E = 80 kcal mole-’ using R = 1.9872 Cal 
mole-l deg-’ . Although the specified data were assumed to be exact, when 
using this value of R the resulting integration cannot be accurate to all the 
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TABLE 1 

Effect of the number of subintervals on computing time and accuracy of numerical inte- 
gration of the temperature integral 

No. of 
subintervals 

Computing 
time 
(min) 

-log I 

E = 30 kcal mole-’ 
(T= 400 K) 

E = 80 kcal mole-l 
(T=800K) 

10 0.30 15.24048210 20.42439332 
20 0.60 15.36721578 20.62094035 
30 0.88 15.38286736 20.65845491 
40 1.18 15.38601943 20.66729999 
50 1.45 15.38693834 20.66780446 
60 1.77 15.38727866 20.66885229 

100 2.85 15.38756119 20.66974319 
200 5.72 15.38760152 20.66987322 
400 11.38 15.38760406 20.66988149 

1000 28.53 15.38760422 20.66988203 
1600 45.00 15.38760423 20.66988204 

Lit. a 15.387604 20.669882 

a From ref. 17. 

digits displayed even though they are kept here to show the complete out- 
put and convergence. The most accurate published values for -log I under 
these two sets of conditions are 15.387604 and 20.669882, respectively 
u71. 

Of course, as the number of subintervals used in the integration increases, 
so does the computing time. Table 1 shows the results of varying the number 
of subintervals on the accuracy of -log I and computing time. As the inte- 
gration is carried out over a longer range of temperature, an increasing num- 
ber of subintervals must be used to provide the same accuracy. For example, 
for To = 0 and T = 400 K with E = 30 kcal mole-‘, the published value of 
-log I is obtained by a 100 subinterval integration. For the To = 0 and T = 
800 K with E = 80 kcal mole-’ case, the 100 subinterval integration gives an 
error of only -0.0002, and the 200 subinterval integration gives four deci- 
mal place agreement with the published value. The values shown in Table 1 
show that a 400 subinterval integration reproduces the six decimal value in 
the shorter temperature interval, but a 1000 subinterval one is required to 
reproduce all six decimal places in the longer temperature integration. It is 
readily apparent that the approach used can reproduce the results obtained 
using a computer at the sacrifice of speed. However, the interactive nature of 
the programmable calculator permitting instant selection of parameters, its 
availability, and its portability make it a viable alternative for these calcula- 
tions. 

Probably the best compromise of accuracy and computing time is 
afforded by the 60 or 100 subinterval computations. The values of -log I are 
accurate enough for most purposes and the computing time is reasonably 
short. This is especially true since iterative processes to evaluate n and E are 



86 

carried out using differences between the values of the integrals at several 
upper temperature limits close together. Therefore, the integrations must be 
reasonably accurate but rapidly carried out. In the interest of accuracy, all 
subsequent integrations in this work were carried out using the 200 subinter- 
val integrations. The values obtained when a 1000 or 1600 subinterval inte- 
gration is used provide more accurate values of -log I than those previously 
published. 

Acceleration of convergence 

In view of the length of time necessary to compute the value of the in& 
grals when a large number of subintervals are used, it became apparent that a 
more rapid method of convergence was desirable. Utilizing this approach, 
several less accurate values could be obtained from integrations with a 
smaller number of intervals and these in turn could be subjected to a 
numerical convergence procedure. One such procedure is the Romberg 
Algorithm [ 253, and a program for carrying it out on a programmable calcu- 
lator has been published [20]. This technique produces rapid convergence of 
a series of values obtained when different numbers of integration steps are 
used, thus avoiding lengthy integrations. 

A series of values for -log I when E = 30 kcal mole-’ and T = 400 K is 
given in Table 1. To test the applicability of the Romberg Algorithm the val- 
ues obtained using 10, 20, 30, 40, and 50 subintervals were subjected to the 
Romberg calculation. The result was a value -log I = 15.38726128, which is 
only slightly more accurate than the value obtained using the 50 subinterval 
integration alone. When the -log I values obtained using 30,40,50,60, and 
100 subinterval integrations were used in the Romberg acceleration method, 
-1ogI = 15.38767829 resulted. .The value for 100 subintervals is 
15-38756119 so there is almost no improvement obtained by using values 
with fewer subintervals and then converging them by the Romberg tech- 
nique. Similar results were obtained using the data when E = 80 kcal mole-’ 
and T = 800 K data in Table 1. It appears that in the case of the temperature 
integral there is not enough improvement to warrant the additional computa- 
tion. A better result is obtained by simply increasing the number of integra- 
tion subintervals. 

Accuracy variation with E and T 

Since using a definite number of integration steps produces a somewhat 
different effect on -log I depending on the values of E and T, it was neces- 
sary to study a broad range of values for these parameters. The range 
selected was chosen to include the most practical values of E (30-100 kcal 
mole-‘) and upper temperature limit (300-1000 K) normally encountered 
in TG work. Table 2 shows the results produced using a 200 subinterval 
integration. Each integral required about 6 min to evaluate so that Table 2 
represents about 6 h of unattended computation. The values of -log I are 
rounded to six decimal places so that they can be compared directly with the 
standard reference compilation 1171. A comparison shows that the data in 
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TABLE 3 

Effect of changing the lower limit with a 200 step integration (E = 30 kcal mole-* ; T(up- 
per) = 400 K) 

Lower limit 
(K) 

--log I 

- 0 
10 i 
25 
50 

100 
200 
300 
350 

15.38760152 
15.38760178 
15.38760213 
15.38760264 
15.38760337 
15.38760406 
15.38760507 
15.38913047 

Table 2 are accurate to all six decimal places at the lower values of E and 
higher upper temperature limits, and agreement is to at least three decimals 
except for E = 90 or 100 kcal mole-’ and T = 300 K. The largest error in 
-log 1, about 0.001, occurs with the highest E values and at the lowest val- 
ues of 2’. Other than those few combinations, agreement is, for the most 
part, to at least four decimal places. More accurate values could have been 
obtained using a larger number of subintervals. For example, the published 
value for -log I when E = 100 kcal mole-’ and T = 400 K is reproduced 
exactly with a 1000 subinterval integration. Since the purpose of these cal- 
culations was to show that suitable accurate values of the temperature inte- 
gral could be obtained in a reasonable time, this approach was not used. 

Effect of change in lower limit 

In certain computations, it is necessary to know the difference between 
Jre-E’RT dT and J&e -E’RT dT, where T,, is some lower limit other than 0 K. 
Accordingly, a program was written to systematically vary the lower limit, 
TO, while keeping the upper limit at 400 K and the integration subintervals at 
200. The results of evaluating this series of integrals is shown in Table 3. 
From the results, it is readily apparent that even when the lower limit is 
300 K no serious error is intx-educed. In fact, the integral evaluates to 

15.3876 for any lower limit in the range O-300 K. Clearly, if there is some 
reason to evaluate the integral with some lower limit than 0 K no significant 
error is introduced if the number of integration subintervals is large. This can 
be of importance with some programmable calcuIators since underflow can 
occur with the large negative value of the exponent when T ti small halting 
computation. Changing the lower limit can prevent this and as can be seen 
from Table 3, no substantial error is introduced. 

Linear relationships 

It has been observed that the relationships 

-logI=ME+B (at constant T) (4) 
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TABLE 4 

Linear regression parameters for -log I = ME + B at constant temperature 

Temp. 

(W 

Slope(M) -Intercept(B) Corr. coeff. 

300 0.7355826 0.9227061 0.999999 
400 0.5534231 1.1669716 0.999998 
500 0.4441065 1.3550171 0.999997 
600 0.3712138 1.5076531 0.999995 

700 0.3191355 1.6359112 0.999994 
800 0.2800668 1.7463596 0.999992 
900 0.2496715 1.8432292 0.999990 

1000 0.2253479 1.9294061 0.999988 

TABLE 5 

Linear regression parameters for -log I = N(l/T) + D at constant E 

E (kcal mole-* ) Slope(N) -Intercept(D) Corr. coeff. 

30 6987.804 2.122092 0.999945 

40 9176.508 2.011027 0.999967 
50 11364.005 1.922756 0.999978 
60 13550.849 1.849458 0.999985 
70 15737.295 1.786755 0.999988 
80 17923.470 1.731943 0.999991 

90 20109.447 1.683230 0.999993 

100 22295.266 1.639364 0.999994 

and 

---log I = N(l/T) + D (at constant E) (5) 

where M, N, B, and D are constants, provide accurate approximations of 
-log 1 in terms of E and Z’, respectively [18]. Also, it was reported that the 
slopes and intercepts could themselves be obtained as functions of E and 2’ 
[lS]. These linear relationships have been investigated, and Tables 4 and 5 
show the regression parameters for fitting the data obtained in this work to 
eqns. (4) and (5). It is readily apparent that by using these parameters it is a 
simple matter to quickly use a programmable calculator to 
for the temperature integral at any values of T and E that 
accurate for all practical purposes. 

produce values 
are sufficiently 

SUMMARY 

This work has shown that it is feasible to perform numerical integration of 
the temperature integral with a pocket programmable calculator to provide 
accurate values that can be used in a data analysis method that does not 
approximate the integral by a truncated series. The fact that the computing 
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machinery is completely interactive and portable frees one from the “fixed” 
values of the data presented in published tables. Acceleration of the integral 
convergence using the Romberg Algorithm does not improve the integration 
materially. Regression parameters have been determined for the -log I rela- 
tionships with E and l/T. 
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